In all the programming language there are mainly two ways to store data.
- Textual Format
- Binary Format
Textual Format
In textual format mostly programmers always follow a standard format like CSV to store data. But in R Language in our intermediate steps we have the ability store the R objects in textual format. So data scientists can preserve/deparse R object by using the dput() or dump() functions.
> x <- data.frame(num = 1:3, name = c('Renien', 'John', 'Joseph')) ## Sample data frame
> dput(x) ## Print the ‘dput’ to console
structure(list(num = 1:3, name = structure(c(3L, 1L, 2L), .Label = c("John",
"Joseph", "Renien"), class = "factor")), .Names = c("num", "name"
), row.names = c(NA, -3L), class = "data.frame")
The output from dput() is in sort of a R code format with all the class details. Therefore it preserves the object in away using dget() we can read back the object into the R Language.
> dput(x, file = 'x.R') ## Store the data in x.R filed
> stored_object <- dget('x.R') ## Read the output from file
> stored_object
num name
1 1 Renien
2 2 John
3 3 Joseph
To store multiple objects we need to use dump().
> y <- "Hello dump function" ## vector object
> x <- data.frame(num = 1:3, name = c('Renien', 'John', 'Joseph')) ## data frame object
> dump(c('x','y'), file = "dumpData.R") ## Store the multiple objects
> rm(x,y) ## Remove the variables
To read the dump() file we need to use source() function.
> source("dumpData.R") ## Load the objects
> x
num name
1 1 Renien
2 2 John
3 3 Joseph
> y
[1] "Hello dump function"
Binary Format
Considering the effectiveness purpose, we need to store R objects in binary format. The key functions are save(), save.image() to store in binary format.
> y <- "Hello dump function"
> x <- data.frame(num = 1:3, name = c('Renien', 'John', 'Joseph'))
> save(x,y,file = "my_xy_data.rda")
> rm(x,y)
> x
Error: object 'x' not found
> load("my_xy_data.rda")
> x
num name
1 1 Renien
2 2 John
3 3 Joseph
> y
[1] "Hello dump function"
To store the data we can use any file extensions. But .rda and . RData are fairly common extensions widely used.
The below code snippet clearly shows all the arguments for save and save.image functions.
save(..., list = character(),
file = stop("'file' must be specified"),
ascii = FALSE, version = NULL, envir = parent.frame(),
compress = isTRUE(!ascii), compression_level,
eval.promises = TRUE, precheck = TRUE)
save.image(file = ".RData", version = NULL, ascii = FALSE,
compress = !ascii, safe = TRUE)